Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 24, 2026
-
Molecular dyes containing carbazole-based π bridges and/or julolidine-based donors should be promising molecules for intense SWIR emission with potential application to molecular bioimaging. This study stochastically analyzes the combinations of more than 250 organic dyes constructed within the D-π-D (or equivalently D-B-D) motif. These dyes are built from 22 donors (D) and 14 π bridges (B) and are computationally examined using density functional theory (DFT). The DFT computations provide optimized geometries from which the excited state transition wavelengths and associated oscillator strengths and orbital overlaps are computed. While absorption is used as a stand-in for emission, the longer the absorption wavelength, the longer the emission should be as well for molecules of this type. Nearly 100 novel dyes reported in this work have electronic absorptions at or beyond 1200 nm, opening the possibility for future synthesis and experimental characterization of new molecular dyes with promising properties for bioimaging.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Glyceric acid [HOCH2CH(OH)COOH]—the simplest sugar acid—represents a key molecule in biochemical processes vital for metabolism in living organisms such as glycolysis. Although critically linked to the origins of life and identified in carbonaceous meteorites with abundances comparable to amino acids, the underlying mechanisms of its formation have remained elusive. Here, we report the very first abiotic synthesis of racemic glyceric acid via the barrierless radical-radical reaction of the hydroxycarbonyl radical (HOĊO) with 1,2-dihydroxyethyl (HOĊHCH2OH) radical in low-temperature carbon dioxide (CO2) and ethylene glycol (HOCH2CH2OH) ices. Using isomer-selective vacuum ultraviolet photoionization reflectron time-of-flight mass spectrometry, glyceric acid was identified in the gas phase based on the adiabatic ionization energies and isotopic substitution studies. This work reveals the key reaction pathways for glyceric acid synthesis through nonequilibrium reactions from ubiquitous precursor molecules, advancing our fundamental knowledge of the formation pathways of key biorelevant organics—sugar acids—in deep space.more » « less
-
New computational and experimental studies have been carried out for the MgCCH radical in its X2Σ+ state. Coupled cluster theory with single, double, and perturbative triples, CCSD(T), was used in conjunction with post-CCSD(T) and scalar relativistic additive corrections to compute vibrational quartic force fields for this molecule. From the quartic force fields, higher-order spectroscopic properties, including rotational constants, were obtained. In tandem, the five lowest energy rotational transitions for MgCCH, N = 1→0 through N = 5→4, were measured for the first time using Fourier transform microwave/millimeter wave methods in the frequency range 9 -50 GHz. The radical was created in the Discharge Assisted Laser Ablation Source (DALAS) developed in the Ziurys group. A combined fit of these data with previous millimeter direct absorption measurements have yielded the most accurate rotational constants for MgCCH to date. The computed principle rotational constant lies within 1.51-1.65 MHz of the experimental one, validating the computational approach. High-level theory was then applied to produce accurate rovibrational spectroscopic constants for MgCCH+, including a rotational constant of B0 = 5354.5–5359.5 MHz.. These new predictions will further the experimental study of MgCCH+, and aid in the low-temperature characterization of MgCCH, detected towards the circumstellar shell of IRC+10216, a carbon-rich star.more » « less
-
Deprotonated azabenzene anions require dipole moments in their corresponding neutral radicals of more than 3.5 D in order to exhibit dipole-bound excited states (DBXSs). This is notably larger than the typical 2.0–2.5 D associated with such behavior. Similar computational analysis on deprotonated purine derivatives also conducted herein only requires the more traditional 2.5 D dipole moment, implying that the single six-membered azabenzene rings have additional factors at play in binding diffuse electrons. The present study also shows that the use of coupled cluster singles and doubles with a double-zeta correlation consistent basis set and additional diffuse functions originating from the center-of-charge for all aspects of the computations decreases the error in predicting DBXSs to less than 0.006 eV at worst and likely less than 0.003 eV for most cases. These results can influence the modeling of molecular spectra beyond fundamental chemical curiosity with application to astrochemistry, solar energy harvesting, and combustion chemistry among others.more » « less
An official website of the United States government
